To investigate the effects of PA-MSHA (Pseudomonas aeruginosa-mannose sensitive hemagglutinin) on inhibiting proliferation of breast cancer cell lines and to explore its mechanisms of action in human breast cancer cells. MCF-10A, MCF-7, MDA-MB-468, and MDA-MB-231HM cells were treated with PA-MSHA or PA (Heat-killed P. aeruginosa) at different concentrations and different times. Changes of cell super-microstructure were observed by transmission electron microscopy. Cell cycle distribution and apoptosis induced by PA-MSHA were measured by flow cytometry (FCM) with PI staining, ANNEXIN V-FITC staining and Hoechst33258 staining under fluorescence microscopy. Western blot was used to evaluate the expression level of apoptosis-related molecules. A time-dependent and concentration-dependent cytotoxic effect of PA-MSHA was observed in MDA-MB-468 and MDA-MB-231HM cells but not in MCF-10A or MCF-7 cells. The advent of PA-MSHA changed cell morphology, that is to say, increases in autophagosomes, and vacuoles in the cytoplasm could also be observed. FCM with PI staining, ANNEXIN V-FITC and Hoechst33258 staining showed that the different concentrations of PA-MSHA could all induce the apoptosis and G(0)-G(1) cell cycle arrest of breast cancer cells. Cleaved caspase 3, 8, 9, and Fas protein expression levels were strongly associated with an increase in apoptosis of the breast cancer cells. There was a direct relationship with increased concentrations of PA-MSHA but not of PA. Completely different from PA, PA-MSHA may impart antiproliferative effects against breast cancer cells by inducing apoptosis mediated by at least a death receptor-related cell apoptosis signal pathway, and affecting the cell cycle regulation machinery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22241 | DOI Listing |
Pharm Dev Technol
January 2025
Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.
View Article and Find Full Text PDFJ Med Econ
January 2025
UNESCO-TWAS, The World Academy of Sciences, Trieste, Italy.
Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.
Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.
Int J Surg
January 2025
Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.
Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!