The effects of long-term (33 months) sun/shade acclimation and short-term (within 10 h) HSO(3) (-) treatment on leaf photosynthetic apparatus were investigated in three subtropical forest plants, Pinus massoniana, Schima superba, and Acmena acuminatissima. After 33 months' growth in two light environments (100 and 12% sunlight), rapid light curves (RLC), chlorophyll fluorescence imaging and chloroplast ultrastructures of three tested species were changed to different degrees. When leaf sections were immersed in 50 mM NaHSO(3) for 10 h, all the RLCs were lowered; chlorophyll fluorescence imaging was inclined to present warmer colors and imaging areas were decreased. However, changes in chloroplast ultrastructures differed from three species. Our results showed that the photosynthetic apparatus of a dominant species, A. acuminatissima, in the late succession stage of a subtropical forest in South China, was less sensitive to NaHSO(3) under both growing light intensities. Conversely, the chloroplasts of P. massoniana, the pioneer heliophyte species, were most susceptible to NaHSO(3). It is deduced that, SO(2) pollution may become as a factor to accelerate the succession of subtropical forest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10646-009-0356-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!