The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by mass spectrometry to the nth power (MS(n)) was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS(3), the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS-MS(n) analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in tandem mass spectrometry experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS-MS(n) analysis of a set of isomers included within a single high-performance liquid chromatography fraction of oligosaccharides released from bovine submaxillary mucin is described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098532PMC
http://dx.doi.org/10.1007/s00216-009-2865-yDOI Listing

Publication Analysis

Top Keywords

precursor ions
12
mass spectrometry
8
product ions
8
ims-msn analysis
8
ions
5
isomers
5
ion mobility-mass
4
mobility-mass spectrometry
4
analysis
4
spectrometry analysis
4

Similar Publications

Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron HO signalling cascade in Drosophila that is essential for long-term memory formation.

View Article and Find Full Text PDF

Glycosylation is a key modification that affects secondary metabolites under stress and is influenced by glycinebetaine (GB) to regulate plant stress tolerance. However, the complexity and detection challenges of glycosides hinder our understanding of the regulatory mechanisms of their metabolic interaction with GB during stress. A glycoside-specific metabolomic approach utilizing cone voltage-induced in-source dissociation was developed, achieving precise and high-throughput detection of glycosides in tea plants by narrowing the target ion range by 94.

View Article and Find Full Text PDF

Facile Synthesis of Functional Mesoporous Organosilica Nanospheres and Adsorption Properties Towards Pb(II) Ions.

Nanomaterials (Basel)

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

We successfully synthesize monodisperse sulfhydryl-modified mesoporous organosilica nanospheres (MONs-SH) via one-step hydrolytic condensation, where cetyltrimethylammonium chloride and dodecyl sulfobetaine are employed as dual-template agents with (3-mercaptopropyl)triethoxysilane and 1,2-bis(triethoxysilyl)ethane as the precursors and concentrated ammonia as the alkaline catalyst. The prepared MONs-SHs deliver a large specific surface area (729.15 m g), excellent monodispersity, and homogeneous particle size.

View Article and Find Full Text PDF

Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.

View Article and Find Full Text PDF

Qualitative and Quantitative Analyses of 1-Aminocyclopropane-1-carboxylic Acid Concentrations in Plants Organs Using Phenyl Isothiocyanate Derivatization.

J Agric Food Chem

January 2025

Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.

1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!