We demonstrated rapid 2,4-dinitrotoluene (DNT) vapor detection at room temperature based on an optofluidic ring resonator (OFRR) sensor. With the unique on-column separation and detection features of OFRR vapor sensors, DNT can be identified from other interferences coexisting in the analyte sample mixture, which is especially useful in the detection of explosives from practical complicated vapor samples usually containing more volatile analytes. The DNT detection limit is approximately 200 pg, which corresponds to a solid phase microextraction (SPME) sampling time of only 1 second at room temperature from equilibrium headspace. A theoretical analysis was also performed to account for the experimental results. Our study shows that the OFRR vapor sensor is a promising platform for the development of a rapid, low-cost, and portable analytical device for explosive detection and monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b900050j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!