The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha), and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1). We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698153 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006068 | PLOS |
J Diabetes Res
January 2025
Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China.
Diabetic liver injury is a serious complication due to the lack of effective treatments and the unclear pathogenesis. Ferroptosis, a form of cell death involving reactive oxygen species (ROS)-dependent lipid peroxidation (LPO), is closely linked to autophagy and diabetic complications. Therefore, this study is aimed at investigating the role of autophagy in regulating ferroptosis by modulating the degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4) in diabetic hepatocytes and its potential impact on diabetic liver injury.
View Article and Find Full Text PDFFood Funct
December 2024
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.
Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) (). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China.
Osteoporosis presents a marked global public health challenge, characterized by deficient osteogenesis and a deteriorating immune microenvironment. Conventional clinical interventions primarily target osteoclast-mediated bone damage, yet lack a comprehensive therapeutic approach that balances bone formation and resorption. Herein, we introduce a bone-targeted nanocomposite, A-Z@Pd(H), designed to address these challenges by integrating diverse functional components.
View Article and Find Full Text PDFEMBO J
December 2024
CRBM, Univ. Montpellier, CNRS, Montpellier, France.
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan. Electronic address:
Extracellular vesicles (EVs) derived from T cells have been proposed to mediate intercellular communication and orchestrate immune responses. The immunosuppressive drug, tacrolimus (TAC), suppresses T cell activity; however, the impact of TAC on T cell-derived EVs remains primarily unexplored. In this study, human primary T cells purified from healthy donors were used to investigate TAC-mediated regulation of EV secretion by T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!