Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma.

J Immunother

Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima, Japan.

Published: September 2009

T-cell-mediated immunotherapy with a chimeric antigen receptor (CAR) is expected to become a powerful treatment for cancer. CD38, highly expressed in B-cell non-Hodgkin lymphoma (B-NHL) cells, is an attractive target in immunotherapy for B-NHL. We retrovirally transduced a T-cell line, Hut78, expressing little CD38, with an anti-CD38-CAR. Hut78 cells with the anti-CD38-CAR were cocultured with B-NHL cell lines bearing CD38 and also B-NHL cells from patients. Four days later most of the lymphoma cells were killed (the level of cytotoxicity was >95%). By contrast, there was undetectable cytotoxicity against CD38-negative cell lines. Then, we introduced the anti-CD38-CAR into human peripheral T cells. However, the recovery of viable cells was very low, presumably because of an autolytic reaction caused by the association of the anti-CD38-CAR with CD38 on the cell surface. The addition of an anti-CD38 antibody increased the yield of viable transduced T cell probably by blocking the autolytic reaction. We cocultured human peripheral T cells bearing anti-CD38-CAR with B-NHL cells. The median specific cytotoxicity was greater than 90%. These cells were injected 4 times into NOD/SCID mice, which were inoculated with B-NHL cells luciferase. Luciferase activity was not detectable even 30 days after the inoculation in 5 of 6 mice injected. By contrast, it increased in all of the mice injected with the mock vector-transduced T cell. In conclusion, T cell with the anti-CD38-CAR showed powerful cytotoxicity against B-NHL cells in vitro and in vivo. These findings may provide an important clue for improving the methodology of T-cell-mediated immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CJI.0b013e3181adaff1DOI Listing

Publication Analysis

Top Keywords

b-nhl cells
20
t-cell-mediated immunotherapy
12
cells
11
immunotherapy chimeric
8
b-cell non-hodgkin
8
non-hodgkin lymphoma
8
cell lines
8
human peripheral
8
peripheral cells
8
autolytic reaction
8

Similar Publications

Background And Objectives: Epcoritamab is a CD3xCD20 bispecific antibody approved for the treatment of adults with different types of relapsed or refractory (R/R) B cell non-Hodgkin lymphoma (B-NHL) after ≥ 2 lines of systemic therapy. Here we report the first results from a population pharmacokinetic model-based analysis using data from 2 phase 1/2 clinical trials (EPCORE NHL-1, NCT03625037 and EPCORE NHL-3, NCT04542824) evaluating epcoritamab in patients with R/R B-NHL.

Methods: Plasma concentration-time data included 6819 quantifiable pharmacokinetic samples from 327 patients with R/R B-NHL.

View Article and Find Full Text PDF
Article Synopsis
  • Relapse in B-cell acute lymphoblastic leukaemia (ALL) and B-cell non-Hodgkin lymphoma (B-NHL) after CD19-directed CAR-T cell therapy is a significant issue, prompting the development of dual CAR-T cells targeting CD19 and additional antigens like CD22 or CD20 to reduce relapse rates.
  • Various methods for creating dual CAR-T cells include co-administration of separate products, co-transduction of T-cells, and the use of bicistronic vectors or bivalent CARs, with early trials indicating that this approach is safe and maintains good remission rates.
  • Despite advancements, challenges remain, including poor CAR-T cell persistence and the fact that
View Article and Find Full Text PDF

In patients diagnosed with B-acute lymphoblastic leukemia (B-ALL) or B-non-Hodgkin's lymphoma (B-NHL) relapsing after allogeneic stem cell transplantation (allo-HCT), it is a standard practice to perform anti-CD19 chimeric antigen receptor (CAR) T-cell therapy. When collected from the patient after allo-HCT, the produced CAR-T cells are likely to be donor T-cell-derived, creating unknown safety risks due to their potential allo-reactivity. We therefore performed an EBMT registry-based study on the incidence of graft-versus-host disease (GvHD) in this setting.

View Article and Find Full Text PDF

NK cells offer a promising alternative to T cell therapies in cancer. We evaluated IPH6501, a clinical-stage, tetraspecific NK cell engager (NKCE) armed with a non-alpha IL-2 variant (IL-2v), which targets CD20 and was developed for treating B cell non-Hodgkin lymphoma (B-NHL). CD20-NKCE-IL2v boosts NK cell proliferation and cytotoxicity, showing activity against a range of B-NHL cell lines, including those with low CD20 density.

View Article and Find Full Text PDF

MRD Detection in B-Cell Non-Hodgkin Lymphomas Using Ig Gene Rearrangements and Chromosomal Translocations as Targets for Real-Time Quantitative PCR and ddPCR.

Methods Mol Biol

October 2024

Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain.

Minimal residual disease (MRD) diagnostics is of high clinical relevance in patients with indolent B-cell non-Hodgkin lymphomas (B-NHL), B-cell chronic lymphocytic leukemia (CLL), and multiple myeloma and serves as a surrogate parameter to evaluate treatment effectiveness and long-term prognosis. Real-time quantitative PCR (RQ-PCR) targeting circulating lymphoma cells is still the gold standard for MRD detection in indolent B-NHL and currently the most sensitive and the most broadly applied method in follicular lymphoma (FL) and mantle cell lymphoma (MCL). Alternatively, droplet digital PCR (ddPCR) can be used for MRD monitoring in multiple myeloma, mantle cell lymphoma, CLL, and FL with comparable sensitivity, accuracy, and reproducibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!