Cellular physiology of the renal H+ATPase.

Curr Opin Nephrol Hypertens

Department of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK.

Published: September 2009

Purpose Of Review: Vacuolar-type H+ATPases are multisubunit macromolecules that play an essential role in renal acid-base homeostasis. Other cellular processes also rely on the proton pumping ability of H+ATPases to acidify organellar or lumenal spaces. Several diseases, including distal renal tubular acidosis, osteoporosis and wrinkly skin syndrome, are due to mutations in genes encoding alternate subunits that make up the H+ATPase. This review highlights recent key articles in this research area.

Recent Findings: Further insights into the structure, expression and regulation of H+ATPases have been elucidated, within the kidney and elsewhere. This knowledge may enhance the potential for future drug targeting.

Summary: Novel findings concerning tissue-specific subunits of the H+ATPase that are important in the kidney and more general lessons of H+ATPase function and regulation are slowly emerging, though the paucity of cellular tools available has to date limited progress.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNH.0b013e32832e9c58DOI Listing

Publication Analysis

Top Keywords

subunits h+atpase
8
cellular physiology
4
physiology renal
4
h+atpase
4
renal h+atpase
4
h+atpase purpose
4
purpose review
4
review vacuolar-type
4
vacuolar-type h+atpases
4
h+atpases multisubunit
4

Similar Publications

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Purification and Reconstitution of Ilyobacter tartaricus ATP Synthase.

Methods Mol Biol

December 2024

Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.

F-type Adenosine triphosphate (ATP) synthase is a membrane-bound macromolecular complex, which is responsible for the synthesis of ATP, the universal energy source in living cells. This enzyme uses the proton- or sodium-motive force to power ATP synthesis by a unique rotary mechanism and can also operate in reverse, ATP hydrolysis, to generate ion gradients across membranes. The FF-ATP synthases from bacteria consist of eight different structural subunits, forming a complex of ~550 kDa in size.

View Article and Find Full Text PDF

This study investigated the mechanism by which ginsenoside Rg_(1 )attenuates hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes by inhibiting the acetylation of ATP synthase subunit alpha(ATP5A1) through silent information regulator 3(SIRT3). In this study, an H/R injury model was constructed by hypoxia for 6 h and reoxygenation for 2 h in HL-1 cardiomyocytes. First, the optimal effective concentration of ginsenoside Rg_1 was determined using a cell viability assay kit.

View Article and Find Full Text PDF

Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing.

Nature

December 2024

State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.

Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway.

View Article and Find Full Text PDF

Abnormal programmed cell death in the tapetum is induced by reactive oxygen species (ROS), which are the main factors leading to cytoplasmic male sterility (CMS). These abnormalities are caused by genetic interactions between nuclear and cytoplasmic genes. To explore the role of chloroplast genes in ROS metabolism, next-generation and single-molecule real-time sequencing of the chloroplast genome were performed in the cotton CMS line Jin A (Jin A-CMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!