Poly (glycerol-sebacate) (PGS) is an elastomeric biodegradable polymer which possesses the ideal properties of drug carriers. In the present study, we prepared a series of PGS implants (5-FU-PGSs) loaded with different weight percent of 5-fluorouracil (2, 5, 7.5 and 10%). We studied the infrared spectrum properties, in vitro degradation and drug release, in vivo degradation and tissue biocompatibility of 5-FU-PGSs, in order to provide detailed information for the application of PGS as biodegradable drug carrier in cancer therapy. Macroscopically, all 5-FU-PGS wafers in phosphate buffer solution (PBS) kept their geometries during the degradation period of 30 days. The in vitro degradation rates of 5-FU-PGSs were accelerated when higher concentration of 5-FU was doped. Scanning electron microscopy observation showed that the surfaces of 5-FU-PGSs with higher concentration of 5-FU had irregular pits. The cumulative drug release profiles of 5-FU-PGSs exhibited a biphasic release with an initial burst release in the first day. After 7 days, almost 100% cumulative release of 5-FU was found for all 5-FU-PGSs.The degradation rate of 5-FU-PGSs in vivo was much quicker than that in vitro. Hematoxylin and eosin staining showed that no remarkable inflammations were observed in the tissue surrounding 5-FU-PGS implants, suggesting 5-FU-PGSs had good biocompatibility and no tissue toxicity. In vitro anti-tumor activity assay suggested that 5-FU-PGSs exhibited anti-tumor activity through sustained-release drug mode. These results demonstrate that PGS is a candidate of biodegradable drug carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.06.007 | DOI Listing |
Drug Des Devel Ther
January 2025
School of Medicine, Kyungpook National University and Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
Background: YYD601 is a new dual delayed-release formulation of esomeprazole, developed to enhance plasma exposure and prolong the duration of acid suppression.
Purpose: This study aimed to evaluate the safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles of YYD601 20 mg following single and multiple oral administrations in healthy, fasting adult Koreans, and to compare these outcomes to those of the conventional esomeprazole 20 mg capsule.
Methods: A randomized, open-label, two-period crossover study was conducted in 28 participants, who were divided into two treatment groups: one group received YYD601 20 mg, and the other received conventional esomeprazole 20 mg, once daily for five consecutive days.
Drug Des Devel Ther
January 2025
Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Drug Des Devel Ther
January 2025
The Key Laboratory of Molecular Pharmacology, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China.
Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.
Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, People's Republic of China.
Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!