Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: The root and stem of Vitis amurensis (Vitaceae) have popularly used as traditional medicine for treatment of cancer and various pains in Korea and Japan. Recent studies, its root and stem possess anti-inflammatory, anti-tumor activities, and protective effects against beta-amyloid-induced oxidative stress.
Aim Of The Study: This study deals with the isolation, structural identification of the potent bioactive compounds from the leaf and stem, and their antioxidant capacity, as well as anti-inflammatory effect via lipoxygenase inhibitory assay.
Materials And Methods: All isolated compounds yielded after using column chromatography were identified base on the physico-chemical properties and 1D, 2D NMR spectra. The scavenge ability against DPPH and ABTS(+) radicals, and to inhibit lipid peroxidation, as well as lipoxygenase type I inhibitory activity of all isolates were performed using in vitro assays.
Results: Eleven resveratrol derivatives (1-11), including a new oligostilbene cis-amurensin B (9), whose structures were determined on the basis of extensively spectral analyses, were isolated from the leaf and stem of Vitis amurensis. The isolates (1-11) were examined for their antioxidant activities by evaluating scavenge ability against DPPH and ABTS(+) radicals, and to inhibit lipid peroxidation. Stilbenes 1 and 4, and oligostilbenes 5-10 displayed moderate anti-lipid peroxidation activities, but all the isolates exhibited strong ABTS(+) radical scavenging activity in the dose-dependent manner. In addition, the isolates showed stronger inhibitory capacity against soybean lipoxygenase type I than that of baicalein, a positive control. Of the isolates, r-2-viniferin (8) exhibited the strongest scavenging activity against ABTS(+) radical with TEAC value of 5.57, and the most potential inhibitory effect on soybean lipoxygenase with the IC(50) value of 6.39 microM.
Conclusion: This is the first report on the potential antioxidant and LOX-1 inhibitory effects of oligostilbenes isolated from the leaf and stem of Vitis amurensis. In addition, chemical compositions isolated from the leaf and stem are almost similar to those isolated from the root of Vitis amurensis. Therefore, the results may explain, in part, the uses of the leaf and stem, as well as the root of Vitis amurensis in the Korean traditional medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2009.06.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!