Selected nucleophile/nitric oxide adducts [compounds which contain the anionic moiety, XN(O-)N = O] were studied for their ability to release nitric oxide spontaneously in aqueous solution and for possible vasoactivity. The diversity of structures chosen included those in which the nucleophile residue, X, was that of a secondary amine [Et2N, as in [Et2NN(N = O)O]Na, 1], a primary amine [iPrHN, as in [iPrHNN(N = O)O]Na, 2], a polyamine, spermine [as in the zwitterion H2N(CH2)3NH2+(CH2)4N[N(N = O)O-](CH2)3NH2, 3], oxide [as in Na[ON(N = O)O]Na, 4], and sulfite [as in NH4[O3SN(N = O)O]NH4, 5]. The rate constants (k) for decomposition in pH 7.4 phosphate buffer at 37 degrees C, as measured by following loss of chromophore at 230-260 nm, were as follows: 1, 5.4 x 10(-3) s-1; 2, 5.1 x 10(-3) s-1; 3, 0.30 x 10(-3) s-1; 4, 5.0 x 10(-3) s-1; and 5, 1.7 x 10(-3) s-1. The corresponding extents of nitric oxide release (ENO) were 1.5, 0.73, 1.9, 0.54, and 0.001 mol/mol of starting material consumed, respectively, as determined from the integrated chemiluminescence response. Vasodilatory activities expressed as the concentrations required to induce 50% relaxation in norepinephrine-constricted aortic rings bathed in pH 7.4 buffer at 37 degrees C (EC50) were as follows: 1, 0.19 microM; 2, 0.45 microM; 3, 6.2 microM; 4, 0.59 microM; and 5, 62 microM. Vasorelaxant potency (expressed as 1/EC50) was strongly correlated with the quantity of .NO calculated from the physicochemical data to be released in the interval required to achieve maximum relaxation at the EC50 doses (r = 0.995). This suggests that such nucleophile/.NO adducts might generally be useful as vehicles for the nonenzymatic generation of nitric oxide, in predictable amounts and at predictable rates, for biological purposes. The particular significance for possible drug design is underscored in the very favorable potency comparison between several of these agents and the established nitrovasodilators sodium nitroprusside and glyceryl trinitrate (EC50 values of 2.0 and greater than 10 microM, respectively) in parallel aortic ring tests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00115a013DOI Listing

Publication Analysis

Top Keywords

10-3 s-1
20
nitric oxide
16
s-1 10-3
12
release nitric
8
buffer degrees
8
microm microm
8
oxide
6
microm
6
10-3
5
s-1
5

Similar Publications

Photonic crystal-based aptasensors for viral proteins detection offer the advantage of producing visible readouts. However, they usually suffer from limited sensitivity and high non-specific background noise. A significant contributing factor to these issues is the use of fixed-conformation aptamers in these sensors.

View Article and Find Full Text PDF

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Shear-induced rotation enhances protein adsorption.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Theories predicted that shear promotes desorption, but due to the presence of factors such as aggregation effects, it is difficult to observe how shear influences the adsorption and desorption of individual protein molecules. In this study, we employed high-throughput single-molecule tracking and molecular dynamics simulations to investigate how shear flow affects the adsorption kinetics of plasma proteins (including human serum albumin, immunoglobulin G, and fibrinogen) at solid-liquid interfaces. Over the studied shear rate range of 0 - 10 s, shear stress did not trigger the protein desorption.

View Article and Find Full Text PDF

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!