Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Topographic features can modulate cell behaviours such as proliferation, migration, differentiation and apoptosis. Biochemical mechanotransduction implies the conversion of mechanical forces (e.g. changes in cell spreading and morphology from changing surface topography) into biochemical signal via biomolecules. Still, little is known concerning which pathways may be directly involved in cell response to changes in the material surface. A number of pathways have been implicated using focused studies of 'selected' biomolecules rather than a global analysis of signal pathways. This study used a controlled disorder nanopit topography (NSQ50, fabricated by electron beam lithography) to direct osteoblast differentiation of progenitor cells. This topography is unique as it represents a middle route (from absolute order or random roughness) that allows osteoconversion with similar efficiency as dexamethasone and ascorbate treatment. Two direct-comparison proteomics techniques, firstly gel-based and then chromatography-based, were used to analyse progenitor proteome changes in response to the nanotopography. Many of the changed proteins form part of the Extracellular Signal-regulated Kinase (ERK1/2) pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.05.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!