The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L(-1) nitric acid. The detection limits (three times the standard deviation of the blank values, n=10) ranged from 0.001 microg (Lu) to 0.11 microg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2009.04.025 | DOI Listing |
Environ Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
Two different strategies for the distribution of macro- and trace elements can be observed in the terrestrial orchid Gymnadenia conopsea. Most trace elements are not translocated to the above-ground parts, whereas for macro-elements the trend was reversed, with the highest accumulation in the distal parts of the plants. Edaphic stress is one of the main factors affecting plant fitness, but it is still poorly understood, even in rare plants such as orchids.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Life Science, Northwest Normal University, 730070 Lanzhou, China.
This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.
View Article and Find Full Text PDFClin Exp Pediatr
January 2025
Department of Pediatrics, Division of Child Neurology, Fırat University Faculty of Medicine, Elazıg, Turkey.
Background: Febrile seizures (FSs) are the most common form of childhood seizures. Determining the role of trace elements in the pathophysiology of FSs will contribute to the management of FSs by pediatricians.
Purpose: This study aimed to investigate the effects of zinc and selenium on the nervous system and how they may influence the risk of FSs.
Vet Res Commun
January 2025
Brooksco Dairy, L.L.C. Quitman, Quitman, 31643-9403, GA, USA.
The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!