Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: Licorice has been used to treat many ailments including cardiovascular disorders in China for long time. Recent studies have shown that the cardiac actions of licorice have been attributed to its active component, glycyrretinic acid (GA). However, its mechanism remains poorly understood.
Aim Of The Study: The effects of GA on the cardiac sodium currents (I(Na)), L-type calcium currents (I(Ca,L)) and hyperpolarization-activated inward currents (I(f)) were investigated.
Materials And Methods: Human isoforms of wild-type and DeltaKPQ-mutant type sodium channels were expressed in Xenopus oocytes, and the resulting currents (peak and late I(Na)) were recorded using a two-microelectrode voltage-clamp technique. A perforated patch clamp technique was employed to record I(Ca,L) and I(f) from isolated rabbit sinoatrial node pacemaker cells.
Results: GA inhibited peak I(Na) (33% at 90 microM) and late I(Na) (72% at 90 microM), but caused no significant effects on I(Ca,L) and I(f).
Conclusion: GA blocked cardiac sodium currents, particularly late I(Na.) Our findings might help to understand the traditional use of licorice in the treatment of cardiovascular disorders, because reduction of sodium currents (particularly late I(Na)) would be expected to provide protection from Na(+)-induced Ca(2+) overload and cell damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2009.06.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!