A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The rosettazyme: a synthetic cellulosome. | LitMetric

The rosettazyme: a synthetic cellulosome.

J Biotechnol

Biomolecular Engineering Department, University of California, Santa Cruz, CA 95064, USA.

Published: August 2009

Cellulose is an attractive feedstock for biofuel production because of its abundance, but the cellulose polymer is extremely stable and its constituent sugars are difficult to access. In nature, extracellular multi-enzyme complexes known as cellulosomes are among the most effective ways to transform cellulose to useable sugars. Cellulosomes consist of a diversity of secreted cellulases and other plant cell-wall degrading enzymes bound to a protein scaffold. These scaffold proteins have cohesin modules that bind conserved dockerin modules on the enzymes. It is thought that the localization of these diverse enzymes on the scaffold allows them to function synergistically. In order to understand and harness this synergy smaller, simplified cellulosomes have been constructed, expressed, and reconstituted using truncated cohesin-containing scaffolds. Here we show that an 18-subunit protein complex called a rosettasome can be genetically engineered to bind dockerin-containing enzymes and function like a cellulosome. Rosettasomes are thermostable, group II chaperonins from the hyperthermo-acidophilic archaeon Sulfolobus shibatae, which in the presence of ATP/Mg(2+) assemble into 18-subunit, double-ring structures. We fused a cohesin module from Clostridium thermocellum to a circular permutant of a rosettasome subunit, and we demonstrate that the cohesin-rosettasomes: (1) bind dockerin-containing endo- and exo-gluconases, (2) the bound enzymes have increased cellulose-degrading activity compared to their activity free in solution, and (3) this increased activity depends on the number and ratio of the bound glucanases. We call these engineered multi-enzyme structures rosettazymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2009.06.019DOI Listing

Publication Analysis

Top Keywords

bind dockerin-containing
8
enzymes
5
rosettazyme synthetic
4
synthetic cellulosome
4
cellulosome cellulose
4
cellulose attractive
4
attractive feedstock
4
feedstock biofuel
4
biofuel production
4
production abundance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!