A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly. | LitMetric

The structure of the Leviviridae bacteriophage phiCb5 virus-like particle has been determined at 2.9 A resolution and the structure of the native bacteriophage phiCb5 at 3.6 A. The structures of the coat protein shell appear to be identical, while differences are found in the organization of the density corresponding to the RNA. The capsid is built of coat protein dimers and in shape corresponds to a truncated icosahedron with T = 3 quasi-symmetry. The capsid is stabilized by four calcium ions per icosahedral asymmetric unit. One is located at the symmetry axis relating the quasi-3-fold related subunits and is part of an elaborate network of hydrogen bonds stabilizing the interface. The remaining calcium ions stabilize the contacts within the coat protein dimer. The stability of the phiCb5 particles decreases when calcium ions are chelated with EDTA. In contrast to other leviviruses, phiCb5 particles are destabilized in solution with elevated salt concentration. The model of the phiCb5 capsid provides an explanation of the salt-induced destabilization of phiCb5, since hydrogen bonds, salt bridges and calcium ions have important roles in the intersubunit interactions. Electron density of three putative RNA nucleotides per icosahedral asymmetric unit has been observed in the phiCb5 structure. The nucleotides mediate contacts between the two subunits forming a dimer and a third subunit in another dimer. We suggest a model for phiCb5 capsid assembly in which addition of coat protein dimers to the forming capsid is facilitated by interaction with the RNA genome. The phiCb5 structure is the first example in the levivirus family that provides insight into the mechanism by which the genome-coat protein interaction may accelerate the capsid assembly and increase capsid stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2009.06.047DOI Listing

Publication Analysis

Top Keywords

coat protein
16
calcium ions
16
bacteriophage phicb5
12
phicb5
10
rna genome
8
protein dimers
8
icosahedral asymmetric
8
asymmetric unit
8
hydrogen bonds
8
phicb5 particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!