We investigated the temporal and regional profile of blood-brain barrier (BBB) permeability to both large and small molecules after moderate fluid percussion (FP) brain injury in rats and determined the effects of post-traumatic modest hypothermia (33 degrees C/4 h) on these vascular perturbations. The visible tracers biotin-dextrin-amine 3000 (BDA-3K, 3 kDa) and horseradish peroxidase (HRP, 44 kDa) were injected intravenously at 4 h or 3 or 7 days post-TBI. At 30 min after the tracer infusion, both small and large molecular weight tracers were detected in the contusion area as well as remote regions adjacent to the injury epicenter in both cortical and hippocampal structures. In areas adjacent to the contusion site, increased permeability to the small molecular weight tracer (BDA-3K) was evident at 4 h post-TBI and remained visible after 7 days survival. In contrast, the larger tracer molecule (HRP) appeared in these remote areas at acute permeable sites but was not detected at later post-traumatic time periods. A regionally specific relationship was documented at 3 days between the late-occurring permeability changes observed with BDA-3K and the accumulation of CD68-positive macrophages. Mild hypothermia initiated 30 min after TBI reduced permeability to both large and small tracers and the infiltration of CD68-positive cells. These results indicate that moderate brain injury produces temperature-sensitive acute, as well as more long-lasting vascular perturbations associated with secondary injury mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848945PMC
http://dx.doi.org/10.1089/neu.2008.0802DOI Listing

Publication Analysis

Top Keywords

permeability large
12
large small
12
brain injury
12
blood-brain barrier
8
small molecules
8
effects post-traumatic
8
vascular perturbations
8
molecular weight
8
permeability
5
small
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!