It is well known that almost all organisms ranging from single cell creatures to human beings exhibit circadian rhythms in physiology and behavior under the control of the internal circadian clock. The internal circadian clock is composed of a master clock which is localized in the suprachiasmatic nucleus and the peripheral clocks located in peripheral tissues such as the liver and heart. Along with aging, the circadian rhythm alters in many aspects, including the amplitude, free-running period and the expression phase. On the other hand, the circadian clock also influences the process of aging. The disorganized circadian rhythm accelerates the aging process. This article briefly reviews the recent progress in the interactions between the circadian clock and aging, and provides evidence to further understand the mechanism of aging and the impact of aging on the organisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

circadian clock
20
circadian
8
interactions circadian
8
internal circadian
8
circadian rhythm
8
clock
6
aging
6
[the interactions
4
clock aging]
4
aging] well
4

Similar Publications

Evaluation of the Digital Ventilated Cage® system for circadian phenotyping.

Sci Rep

January 2025

Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.

The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.

View Article and Find Full Text PDF

Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.

View Article and Find Full Text PDF

Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.

View Article and Find Full Text PDF

Background: Sleep is a conserved physiological phenomenon across species. It is mainly controlled by two processes: a circadian clock that regulates the timing of sleep and a homeostat that regulates the sleep drive. Even cnidarians, such as Hydra and jellyfish, which lack a brain, display sleep-like states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!