Activity-dependent changes in gene-expression are believed to underlie the molecular representation of memory. In this study, we report that in vivo activation of neurons rapidly induces the CREB-regulated microRNA miR-132. To determine if production of miR-132 is regulated by neuronal activity its expression in mouse brain was monitored by quantitative RT-PCR (RT-qPCR). Pilocarpine-induced seizures led to a robust, rapid, and transient increase in the primary transcript of miR-132 (pri-miR-132) followed by a subsequent rise in mature microRNA (miR-132). Activation of neurons in the hippocampus, olfactory bulb, and striatum by contextual fear conditioning, odor-exposure, and cocaine-injection, respectively, also increased pri-miR-132. Induction kinetics of pri-miR-132 were monitored and found to parallel those of immediate early genes, peaking at 45 min and returning to basal levels within 2 h of stimulation. Expression levels of primary and mature-miR-132 increased significantly between postnatal Days 10 and 24. We conclude that miR-132 is an activity-dependent microRNA in vivo, and may contribute to the long-lasting proteomic changes required for experience-dependent neuronal plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847008PMC
http://dx.doi.org/10.1002/hipo.20646DOI Listing

Publication Analysis

Top Keywords

neuronal activity
8
rapidly induces
8
activation neurons
8
microrna mir-132
8
mir-132
5
activity rapidly
4
induces transcription
4
transcription creb-regulated
4
creb-regulated microrna-132
4
microrna-132 vivo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!