Six Theileria spp. from cattle, buffalo and black goat were identified in the Hubei province of China. In order to study the taxonomic status of these parasites, phylogenetic analysis of 18S rRNA genes were carried out. The 18S rRNA genes from each isolate were amplified by the polymerase chain reaction and the approximate 1.75 kb products were cloned and sequenced. Phylogenetic analysis of these gene sequences revealed that the five parasites from buffalo and cattle belonged to the Theileria sergenti/buffeli/orientalis group. The parasite from the Chinese goat (Macheng-Hubei, DQ286802) was closely related to Theileria luwenshuni isolated from sheep in the north of China. This represent the first report on the use of molecular phylogeny to classify Theileria spp. obtained in the Hubei province, showing that Theileria spp. from ruminants found in Hubei province belongs to the benign group of Theileria spp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11250-009-9392-x | DOI Listing |
Animals (Basel)
December 2024
Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy.
Ticks are a major concern for both animal and human health, as they are primary vectors of infectious pathogens. This study focused on ticks found in a nature reserve in southern Italy, highly frequented for recreational activities and inhabited by wild boars. Using molecular techniques, 214 ticks, including questing ticks and those removed from wild boars, were examined for tick-borne pathogens (TBPs), with a focus on zoonotic pathogens.
View Article and Find Full Text PDFPathogens
December 2024
Centro di Referenza Nazionale per Anaplasma, Babesia Rickettsia, e Theileria (C.R.A.Ba.R.T.), Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy.
Vector-borne diseases represent a serious threat to human and animal health, especially where environmental conditions favor pathogen-carrying vectors. Dogs serve as natural hosts for two tick-borne pathogens: , which causes canine monocytic ehrlichiosis, and spotted fever group (SFG) spp., a zoonotic threat in the Mediterranean region.
View Article and Find Full Text PDFPathogens
December 2024
Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
More than one-hundred species that affect animals and humans have been described, eight of which have been associated with emerging and underdiagnosed zoonoses. Most diagnostic studies in humans have used serology or molecular assays based on the 18S rRNA gene. Because the 18S rRNA gene is highly conserved, obtaining an accurate diagnosis at the species level is difficult, particularly when the amplified DNA fragment is small.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland.
Introduction And Objective: Parasites of the genus are intracellular protozoa that infect the leukocytes and erythrocytes of animals, causing theileriosis. The aim of the study was to examine the presence of spp. in adult ticks and their offspring in the Lublin region of eastern Poland.
View Article and Find Full Text PDFHeliyon
December 2024
Qinghai University State Key Laboratory of Plateau Ecology and Agriculture, Xining, 810016, Qinghai, China.
The Qinghai Lake National Nature Reserve (QLNNR), renowned for its abundant natural resources and diverse ecological habitats, serves as an ideal environment for ticks, thereby increasing the risk of various tick-borne pathogens (TBPs) transmission. This study aimed to investigate the prevalence of TBPs in ticks collected from Przewalski's gazelle and Tibetan sheep within the QLNNR. A total of 313 tick samples were collected from the vicinity of Qinghai Lake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!