Synapsis of homologous chromosomes is a key meiotic event, mediated by a large proteinaceous structure termed the synaptonemal complex. Here, we describe a role in meiosis for the murine death-inducer obliterator (Dido) gene. The Dido gene codes for three proteins that recognize trimethylated histone H3 lysine 4 through their amino-terminal plant homeodomain domain. DIDO3, the largest of the three isoforms, localizes to the central region of the synaptonemal complex in germ cells. DIDO3 follows the distribution of the central region protein SYCP1 in Sycp3-/- spermatocytes, which lack the axial elements of the synaptonemal complex. This indicates that synapsis is a requirement for DIDO3 incorporation. Interestingly, DIDO3 is missing from the synaptonemal complex in Atm mutant spermatocytes, which form synapses but show persistent trimethylation of histone H3 lysine 4. In order to further address a role of epigenetic modifications in DIDO3 localization, we made a mutant of the Dido gene that produces a truncated DIDO3 protein. This truncated protein, which lacks the histone-binding domain, is incorporated in the synaptonemal complex irrespective of histone trimethylation status. DIDO3 protein truncation in Dido mutant mice causes mild meiotic defects, visible as gaps in the synaptonemal complex, but allows for normal meiotic progression. Our results indicate that histone H3 lysine 4 demethylation modulates DIDO3 localization in meiosis and suggest epigenetic regulation of the synaptonemal complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00412-009-0223-7 | DOI Listing |
Nucleic Acids Res
December 2024
Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India.
Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
The synaptonemal complex (SC) is a zipper-like protein structure that aligns homologous chromosome pairs and regulates recombination during meiosis. Despite its conserved appearance and function, how synapsis occurs between chromosome axes remains elusive. Here, we demonstrate that Polo-like kinases (PLKs) phosphorylate a single conserved residue in the disordered C-terminal tails of two paralogous SC subunits, SYP-5 and SYP-6, to establish an electrostatic interface between the SC central region and chromosome axes in C.
View Article and Find Full Text PDFMicron
February 2025
Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea. Electronic address:
Animals (Basel)
November 2024
Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia.
Among eukaryotes, there are many examples of partial genome elimination during ontogenesis. A striking example of this phenomenon is the loss of entire avian chromosomes during meiosis, called a germline-restricted chromosome (GRC). The GRC is absent in somatic tissues but present in germ cells.
View Article and Find Full Text PDFCells
November 2024
Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda 415-0025, Shizuoka, Japan.
Animals show diverse processes of gametogenesis in the evolutionary pathway. Here, we characterized the spermatogenic cells in the testis of the marine invertebrate sperm differentiate in a non-cystic type of testis, comprising many follicles with various sizes and stages of spermatogenic cells. In the space among follicles, we observed free cells that were recognized by antibody against Müllerian inhibiting substance, a marker for vertebrate Sertoli cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!