Identification and functional analysis of a CDE/CHR element in the POLD1 promoter.

Sci China C Life Sci

Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, Beijing Normal University, Beijing 100875, China.

Published: June 2009

DNA polymerase delta is encoded by the POLD1 gene, the transcription of which is strictly cell cycle-dependent. However, the means by which POLD1 transcription is regulated by the cell cycle mechanism is currently unknown. We discovered a novel element in the POLD1 promoter known as a CDE(cell cycle-dependent element)/CHR(cell cycle gene homology region) element. A series of luciferase reporter constructs containing various POLD1 promoter mutations were used to investigate the role of the CDE/CHR element in POLD1 transcription. When the CDE/CHR element was mutated, the promoter activity was up-regulated, and the cell-cycle related factors E2F1 and p21 stopped regulating the promoter. Furthermore, cell cycle-dependent changes in the promoter activity required the integrative CDE/CHR element. Electrophoretic mobility shift assay (EMSA) revealed the presence of at least three types of DNA/protein complexes binding to the CDE/CHR element. Our findings provide strong evidence that the CDE/CHR-like sequence is an active functional element in the POLD1 promoter, which is important for the cell cycle regulation of the POLD1 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-009-0077-5DOI Listing

Publication Analysis

Top Keywords

cde/chr element
20
element pold1
16
pold1 promoter
16
element
8
pold1
8
pold1 gene
8
cell cycle-dependent
8
pold1 transcription
8
cell cycle
8
promoter activity
8

Similar Publications

A central question in cell cycle control is how differential gene expression is regulated. Timing of expression is important for correct progression through the cell cycle. E2F, CDE, and CHR promoter sites have been linked to transcriptional repression in resting cells and activation during the cell cycle.

View Article and Find Full Text PDF

The transcription factor p53 is central to cell cycle control by downregulation of cell cycle-promoting genes upon cell stress such as DNA damage. Survivin (BIRC5), CDC25C, and PLK1 encode important cell cycle regulators that are repressed following p53 activation. Here, we provide evidence that p53-dependent repression of these genes requires activation of p21 (CDKN1A, WAF1, CIP1).

View Article and Find Full Text PDF

The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used.

View Article and Find Full Text PDF

Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein.

Nucleic Acids Res

January 2014

Molecular Oncology, Medical School, University of Leipzig, Semmelweisstr. 14, 04103 Leipzig, Germany and Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.

Infection by oncogenic viruses is a frequent cause for tumor formation as observed in cervical cancer. Viral oncoproteins cause inactivation of p53 function and false transcriptional regulation of central cell cycle genes. Here we analyze the regulation of Plk4, serving as an example of many cell cycle- and p53-regulated genes.

View Article and Find Full Text PDF

Gene regulation of many key cell-cycle players in S-, G(2) phase, and mitosis results from transcriptional repression in their respective promoter regions during the G(0) and G(1) phases of cell cycle. Within these promoter regions are phylogenetically conserved sequences known as the cell-cycle-dependent element (CDE) and cell-cycle genes homology regions (CHR) sites. Thus, we hypothesize that transcriptional regulation of cell-cycle regulation via the CDE/CHR region together with liver-specific apolipoprotein E (apoE)-hAAT promoter could bring about a selective transgene expression in proliferating human hepatocellular carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!