Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films.

Chem Commun (Camb)

Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee, USA.

Published: July 2009

Sacrificial layer electrophoretic deposition (SLED) is a technique to assemble nanoparticles that yields free-standing, multilayered nanoparticle films with macroscopic lateral dimensions after the sacrificial layer is dissolved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b902622cDOI Listing

Publication Analysis

Top Keywords

sacrificial layer
12
layer electrophoretic
8
electrophoretic deposition
8
free-standing multilayered
8
multilayered nanoparticle
8
nanoparticle films
8
deposition free-standing
4
films sacrificial
4
deposition sled
4
sled technique
4

Similar Publications

One-step bioprinting of endothelialized, self-supporting arterial and venous networks.

Biofabrication

January 2025

Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.

Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.

View Article and Find Full Text PDF

We report a silicon anode for lithium-ion batteries consisting of a layer of 100% nanotubes directly bonded to copper foil. The process involved silicon deposition on a sacrificial zinc oxide nanorod film and removal of zinc oxide to produce a nanotube film directly on thin copper foils. The thickness of resulting films ranged from 9 to 20 μm with Si nanotubes having diameters of 200-400 nm and lengths of 2-10 μm.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

The manufacturing of thin films through selective laser sintering of micro/nanoparticles is an emerging technology that has been developing rapidly over the last two decades owing to its digitization, efficiency, and good adaptability to various materials. However, high-quality laser sintering of different materials remains a challenge: ceramic particles are difficult to be sintered due to low absorbance; metallic particles are prone to oxidation; semiconductor particles are difficult to process for performance enhancement due to high stress. In this work, a new approach is proposed that employs an additional Indium Tin Oxide (ITO) sacrificial layer to assist laser sintering of different functional materials, which detaches after sintering without contaminating the target material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!