The relationship between the cusp pattern and plural stem cell compartments in Guinea pig cheek teeth by chasing BrdU-labeling.

Arch Histol Cytol

Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, and Pediatric Dentistry, Niigata University Medical and Dental Hospital, Niigata, Japan.

Published: December 2008

Continuously growing rodent incisors have a special epithelial structure for maintaining adult stem cells that shows a bulbous epithelial protrusion at the apical end and is referred to as an "apical bud". Guinea pig cheek teeth (premolars and molars), also continuously growing teeth, have a complex crown shape consisting of plural cusps. The present study clarifies the existence of apical buds in guinea pig premolars/molars as it examines the relationship between the crown shape and the orientation of the apical buds by micro-computed tomography (micro-CT) and immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU). One premolar and three molar teeth in each side of the maxillae and mandibles assumed characteristic features: each horizontally-sectioned tooth showing a complex zigzag shape was composed of a core of dentin covered by a layer of enamel on all axial surfaces except the buccal of the uppers and the lingual of the lowers. Furthermore, four bulbous epithelial protrusions--including the stellate reticulum--were recognized in the apical end of each tooth, where slow-cycling long-term label-retaining cells resided 20 days after a peritoneal injection of BrdU. These data indicate that guinea pig premolars/molars have four apical buds where the epithelial adult stem cells reside. In contrast, rodent incisors, which show a single cone appearance, are covered by enamel on the labial side and possess only one apical bud. The results of this study suggest that plural apical buds, being arranged bucco-lingually and mesio-distally, produce the crown mold in a zigzag fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1679/aohc.71.317DOI Listing

Publication Analysis

Top Keywords

guinea pig
16
apical buds
16
pig cheek
8
cheek teeth
8
continuously growing
8
rodent incisors
8
adult stem
8
stem cells
8
bulbous epithelial
8
crown shape
8

Similar Publications

Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.

View Article and Find Full Text PDF

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

The order Rodentia comprises nearly 45% of all extant taxa, currently organized into 31 living families, some 450 genera, and roughly 2010 species (Kelt & Patton, 2020). Considering that rodents began evolving at least 66 million years ago, it is not surprising that they have diversified into five distinct suborders. With the advent of molecular biology, this difference can often be seen at the molecular level as well.

View Article and Find Full Text PDF

Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.

Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.

View Article and Find Full Text PDF

Capture primed pluripotency in guinea pig.

Stem Cell Reports

December 2024

Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China. Electronic address:

Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!