The 26-amino acid beta-motif of the Pit-1beta transcription factor is a dominant and independent repressor domain.

Mol Endocrinol

University of Colorado Denver, Anschutz Medical Center, P.O. Box 6511, Mail Stop 8106, Aurora, Colorado 80045, USA.

Published: September 2009

The POU-homeodomain transcription factor Pit-1 governs the pituitary cell-specific expression of Pit-1, GH, prolactin (PRL), and TSHbeta genes. Alternative splicing generates Pit-1beta, which contains a 26-amino acid beta-domain inserted at amino acid 48, in the middle of the Pit-1 transcription activation domain (TAD). Pit-1beta represses GH, PRL, and TSHbeta promoters in a pituitary-specific manner, because Pit-1beta activates these same promoters in HeLa nonpituitary cells. Here we comprehensively analyze the role of beta-domain sequence, position, and context, to elucidate the mechanism of beta-dependent repression. Repositioning the beta-motif to the Pit-1 amino terminus, hinge, linker, and carboxyl terminus did not affect its ability to repress basal rat (r) PRL promoter activity in GH4 pituitary cells, but all lost the ability to repress Ras-induced rPRL promoter activity. To determine whether beta-domain repression is independent of Pit-1 protein and DNA binding sites, we generated Gal4-Pit-1TAD, Gal4-Pit-1betaTAD, and Gal4-beta-domain fusions and demonstrated that the beta-motif is sufficient to actively repress VP16-mediated transcription of a heterologous promoter. Moreover, beta-domain point mutants had the same effect whether fused to Gal4 or within the context of intact Pit-1beta. Surprisingly, Gal4-beta repression lost histone deacetylase sensitivity and pituitary specificity. Taken together, these results reveal that the beta-motif is a context-independent, modular, transferable, and dominant repressor domain, yet the beta-domain repressor activity within Pit-1beta contains cell type, promoter, and Pit-1 protein context dependence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737555PMC
http://dx.doi.org/10.1210/me.2008-0137DOI Listing

Publication Analysis

Top Keywords

26-amino acid
8
transcription factor
8
repressor domain
8
prl tshbeta
8
ability repress
8
promoter activity
8
pit-1 protein
8
pit-1beta
6
pit-1
6
beta-domain
5

Similar Publications

Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff.

View Article and Find Full Text PDF

The study of salivary amino acid profiles has attracted the attention of researchers, since amino acids are actively involved in most metabolic processes, including breast cancer. In this study, we analyzed the amino acid profile of saliva in a sample including all molecular biological subtypes of breast cancer to obtain a more complete picture and evaluate the potential utility of individual amino acids or their combinations for diagnostic purposes. This study included 116 patients with breast cancer, 24 patients with benign breast disease, and 25 healthy controls.

View Article and Find Full Text PDF

APOA5 deficiency causes hypertriglyceridemia by reducing amounts of lipoprotein lipase in capillaries.

J Lipid Res

July 2024

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. Electronic address:

Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism.

View Article and Find Full Text PDF

Identification of a candidate gene for the I locus determining the dominant white bulb color in onion (Allium cepa L.).

Theor Appl Genet

May 2024

Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186, Republic of Korea.

Through a map-based cloning approach, a gene coding for an R2R3-MYB transcription factor was identified as a causal gene for the I locus controlling the dominant white bulb color in onion. White bulb colors in onion (Allium cepa L.) are determined by either the C or I loci.

View Article and Find Full Text PDF

Carboxyl-terminal sequences in APOA5 are important for suppressing ANGPTL3/8 activity.

Proc Natl Acad Sci U S A

April 2024

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 462585.

Article Synopsis
  • Apolipoprotein AV (APOA5) helps lower fat levels (triglycerides) in the blood by stopping another protein complex (ANGPTL3/8) from interfering with lipoprotein lipase (LPL), which breaks down fats.
  • Researchers found that a mutation in APOA5 leads to higher triglyceride levels, meaning certain parts of the protein are needed to perform its job well.
  • Experiments with mice showed that the normal version of APOA5 worked to reduce triglyceride levels, while a modified version without important parts didn’t, highlighting those parts' key role in keeping fat levels in check.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!