Specific roles of Rac1 and Rac2 in motile functions of HT1080 fibrosarcoma cells.

Biochem Biophys Res Commun

Department of Pathology, University of Bern, Murtenstr. 31, CH-3010 Bern, Switzerland.

Published: September 2009

Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.06.098DOI Listing

Publication Analysis

Top Keywords

rac1 rac2
16
ht1080 cells
12
specific roles
8
roles rac1
8
adhesion migration
8
chemotaxis ht1080
8
downregulation rac1
8
spreading adhesion
8
rac1
6
chemotaxis
6

Similar Publications

Proteomic analysis of wanxi white goose testicles in different reproductive stages by data-independent acquisition (DIA) strategy.

Theriogenology

March 2025

College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118, China. Electronic address:

Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.

View Article and Find Full Text PDF

Background: Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence.

Methods: We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort.

View Article and Find Full Text PDF

Mast cells are hematopoietic-derived immune cells that possess numerous cytoplasmic granules containing immune mediators such as cytokines and histamine. Antigen stimulation triggers mast cell granule exocytosis, releasing granule contents in a process known as degranulation. We have shown that Rho GTPase signaling is an essential component of granule exocytosis, however, the proteins that regulate Rho GTPases during this process are not well defined.

View Article and Find Full Text PDF

The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C.

View Article and Find Full Text PDF

Optically active left (M)- and right (P)-handed helical syndiotactic poly(methyl methacrylate)s (M- and P-st-PMMAs) with a helicity memory enantioselectively encapsulated the racemic C derivatives, such as 3,4-fulleroproline tert-butyl ester (rac-1) and tetraallylated C (rac-2), as well as the C-bound racemic 3-helical peptides (rac-3) within their helical cavities to form peapod-like inclusion complexes and a unique "helix-in-helix" superstructure, respectively. The enantiomeric excess (ee) and separation factor (enantioselectivity) (α) of the analyte 1 (ee = 23%-25% and α = 2.35-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!