The main purpose of the present study was to investigate different cationic submicron emulsions as potential delivery for oral administration. Different submicron emulsion based formulations were prepared by standard procedures incorporating Chitosan, stearylamine, and protamine as charge inducer. Saquinavir (SQ) laden emulsions were characterized in terms of globule size, zeta potential, entrapment efficiency, release profile, cytotoxicity, LDH release, and stability studies. The prepared formulations were stable in terms of mean globule size, drug content, and tended to retain their cationic charge. Pay load efficiency was found to be pretty high (approximately 95-99%) in various formulations prepared. Sustained release phenomenon was more prominent in the case of chitosan emulsions (CE) followed by stearylamine emulsion (SE), Protamine emulsion (PE), and then plain emulsion (E) containing no charge inducer. The total amounts of drug released in 24 hr from CE, SE, PE, and E were 46%, 52%, 56%, and 62%, respectively. The induction of positive charge in emulsions resulted in enhanced absorption of drug through intestinal membrane. The apparent permeability coefficient through the intestinal sac was in the order of CE > SE > PE > E. The permeation flux of SQ through CE (1.0 microg/min) was more than twice compared to plain emulsion (0.46 microg/min) while it was almost three times (0.3 microg/min) compared to control. However, protamine based emulsion didn't confer significant improvement in absorption when compared to plain emulsion formulation. By this study it can be concluded that induction of positive charge on submicron emulsions can be effective for improving oral absorption of drug safely, as it is evinced with low LDH release into the medium when intestinal tissue is treated with submicron emulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10717540802481646 | DOI Listing |
Dermatol Surg
December 2024
School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada.
Background: Effective topical delivery of large/charged molecules into skin has always been challenging. Chemical penetration enhancers, organic substances that increase permeability of skin, have been in use for decades with variable success. One application of enhancers involves multilamellar vesicles composed of submicron emulsion droplets and micelles surrounded by concentric phospholipid bilayers.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
School of Integrated Science and Innovation, Sirindhorn International Institute of Technology (SIIT), Thammasat University, Pathum Thani, 12121, Thailand.
J Colloid Interface Sci
February 2025
Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b rue de la Férollerie, CS 40059, 45071 Orléans Cedex 2, France.
Hypothesis: Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Polymer Science & Engineering Department, 120 Governors Drive, University of Massachusetts, Amherst, MA, 01003. Electronic address:
While free radical polymerization methods are employed frequently to prepare sub-micron polymer particles, we hypothesized that surfactant-free emulsion polymerization (SFEP) methodology may prove beneficial for obtaining functional polymer particles by solution polymerization methods that preclude the need for conventional surfactants. To test the effectiveness of SFEP for the preparation of functional colloids, solution polymerization of several monomers, including propargyl acrylate (PA), styrene (Sty) and tert-butyl acrylate (t-BA), was performed over a range of monomer ratios and reaction scales. Electron microscopy and infrared spectroscopy were employed to evaluate the outcome of SFEP for particle size, shape, surface anisotropy, and chemical composition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.
This work introduces a novel 1-pot, 0-waste, 0-VOC methodology for synthesizing polymeric surfactants using acrylated epoxidized soybean oil and acrylated glycerol as primary monomers. These macromolecular surfactants are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, allowing for tunable hydrophilic-lipophilic balance (HLB) and ionic properties. We characterize the copolymers' chemical composition and surface-active properties, and evaluate their effectiveness in forming and stabilizing emulsions of semiepoxidized soybean oil and poly(acrylated epoxidized high oleic soybean oil).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!