Objectives: Ultrasmall particles of iron oxide (USPIO) possess superparamagnetic properties and are used as negative contrast agent in magnetic resonance imaging (MRI) because of their strong T(2) and T(2)* effects. Besides this method, electron paramagnetic resonance (EPR) offers the unique capability to quantify these particles. The objective of this study was to evaluate a molecular marker for non invasive diagnosis and monitoring of inflammation. During inflammation cell adhesion molecules such as E-selectin are expressed on the endothelial cell surface. An E-selectin ligand was coupled to pegylated USPIO particles.
Materials And Methods: Inflammation was induced by intramuscular injection of Freund's Complete Adjuvant in male NMRI mice. After intravenous injection of grafted or ungrafted USPIO particles, iron concentration in inflamed muscles was quantified ex vivo by X-band EPR. Particle accumulation was also assessed in vivo by L-Band EPR, as well as by T(2)-weighted MRI.
Results: We determined the mean iron oxide concentration in inflamed muscles after injection of grafted or ungrafted UPSIO particles, which was 0.8% and 0.4% of the initially injected dose, respectively. By L-band EPR, we observed that the concentration of the grafted USPIO particles in inflamed muscles was twice higher than for the ungrafted particles. Using MRI experiments, a higher signal loss was clearly observed in the inflamed muscle when grafted particles were injected in comparison with the ungrafted particles.
Conclusion: Even taking into account a non specific accumulation of iron oxides, the targeting of USPIO particles with E-selectin ligands significantly improved the sensitivity of detection of inflamed tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/rli.0b013e3181a49639 | DOI Listing |
ChemSusChem
January 2025
University of Rochester, Department of Chemical Engineering, ., 14627, Rochester, UNITED STATES OF AMERICA.
Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan.
The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 435 Skirkanich Hall, Philadelphia, Pennsylvania 19104, United States.
Nanoparticles have gained attention as drug delivery vehicles for cancer treatment, but often struggle with poor tumor accumulation and penetration. Single external magnets can enhance magnetic nanoparticle delivery but are limited to superficial tumors due to the rapid decline in the magnetic field strength with distance. We previously showed that a 2-magnet device could extend targeting to greater tissue depths.
View Article and Find Full Text PDFProteins
January 2025
Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!