How does the information of spatiotemporal sequence stemming from the hippocampal CA3 area affect the postsynaptic membrane potentials of the hippocampal CA1 neurons? In a recent study, we observed hierarchical clusters of the distribution of membrane potentials of CA1 neurons, arranged according to the history of input sequences (Fukushima et al Cogn Neurodyn 1(4):305-316, 2007). In the present paper, we deal with the dynamical mechanism generating such a hierarchical distribution. The recording data were investigated using return map analysis. We also deal with a collective behavior at population level, using a reconstructed multi-cell recording data set. At both individual cell and population levels, a return map of the response sequence of CA1 pyramidal cells was well approximated by a set of contractive affine transformations, where the transformations represent self-organized rules by which the input pattern sequences are encoded. These findings provide direct evidence that the information of temporal sequences generated in CA3 can be self-similarly represented in the membrane potentials of CA1 pyramidal cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727166 | PMC |
http://dx.doi.org/10.1007/s11571-009-9086-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!