In continuation of our research program on new antitubercular agents, this article is a report of the synthesis of 97 various symmetrical, unsymmetrical, and N-substituted 1,4-dihydropyridines. The synthesized molecules were tested for their activity against M. tuberculosis H (37)Rv strain with rifampin as the standard drug. The percentage inhibition was found in the range 3-93%. In an effort to understand the relationship between structure and activity, 3D-QSAR studies were also carried out on a subset that is representative of the molecules synthesized. For the generation of the QSAR models, a training set of 35 diverse molecules representing the synthesized molecules was utilized. The molecules were aligned using the atom-fit technique. The CoMFA and CoMSIA models generated on the molecules aligned by the atom-fit method show a correlation coefficient (r (2)) of 0.98 and 0.95 with cross-validated r (2)(q (2)) of 0.56 and 0.62, respectively. The 3D-QSAR models were externally validated against a test set of 19 molecules (aligned previously with the training set) for which the predictive r(2)(r(r)(pred)) is recorded as 0.74 and 0.69 for the CoMFA and CoMSIA models, respectively. The models were checked for chance correlation through y-scrambling. The QSAR models revealed the importance of the conformational flexibility of the substituents in antitubercular activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-009-9162-8 | DOI Listing |
J Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P.R. China.
Milestoning is an efficient method for calculating rare event kinetics by constructing a continuous-time kinetic network that connects the reactant and product states. Its accuracy depends on both the quality of the underlying force fields and the trajectory sampling. The sampling error can be effectively controlled through various methods.
View Article and Find Full Text PDFProteomes
January 2025
Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.
The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Molecularly imprinted polymers (MIPs) are typically synthesized in organic solvents, leading to poor compatibility with water, weak affinity and selectivity for target molecules in aqueous media. To address these challenges, a green and sustainable synthesis of sandwich bread-like ATP@MIP was conducted using polyethylenimide (PEI) and deep eutectic solvent (DES) as hydrophilic bi-functional monomers via layer-by-layer self-assembly on the attapulgite (ATP) carrier. The new ATP@MIP can provide a higher density of imprinting sites with more orderly and uniform distribution due to inhibiting the competitive polymerization between PEI and DES, thereby significantly enhancing recognition ability.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
Many biological fibrous tissues exhibit distinctive mechanical properties arising from their highly organized fibrous structure. In disease conditions, alterations in the primary components of these fibers, such as type I collagen molecules in bone, tendons, and ligaments, assembly into a disorganized fibers architecture generating a weak and/or brittle material. Being able to quantitatively assess the fibers orientation and organization in biological tissue may help improve our understanding of their contribution to the tissue and organ mechanical integrity, and assess disease progress and therapy effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!