A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. | LitMetric

Granular biomass was temporally sampled from a cold (4-15 degrees C) anaerobic bioreactor, which was inoculated with mesophilic biomass and used to treat industrial wastewater in a long-term (3.4 year) study. Data from 16S rRNA gene clone libraries, quantitative PCR and terminal restriction fragment length polymorphism analyses indicated that microbial community structure was dynamic, with shifts in the archaeal and bacterial communities' structures observed following start-up and during temperature decreases from 15 to 9.5 degrees C (phase 1). Specifically, the relative abundance of architecturally important Methanosaeta-like (acetoclastic) methanogens decreased, which was concomitant with granule disintegration and the development of a putatively psychrophilic hydrogenotrophic methanogenic community. Genetic fingerprinting suggested the development of a psychroactive methanogenic community between 4 and 10 degrees C (phase 2), which was dominated by acetogenic bacteria and Methanocorpusculum-like (hydrogenotrophic) methanogens. High levels of Methanosaeta-like acetoclastic methanogens and granular biofilm integrity were maintained during phase 2. Overall, decreasing temperature resulted in distinctly altered microbial community structure during phase 1, and the development of a less dynamic psychroactive methanogenic consortium during phase 2. Moreover, psychrophilic H(2)-oxidizing methanogens emerged as important members of the psychroactive consortia after >1200 days of low-temperature cultivation. The data suggest that prolonged psychrophilic cultivation of mesophilic biomass can establish a well-functioning psychroactive methanogenic consortium, thus highlighting the potential of low-temperature anaerobic digestion technology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ismej.2009.67DOI Listing

Publication Analysis

Top Keywords

methanogenic community
12
psychroactive methanogenic
12
mesophilic biomass
8
microbial community
8
community structure
8
degrees phase
8
methanosaeta-like acetoclastic
8
acetoclastic methanogens
8
methanogenic consortium
8
community
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!