As a universal means of communication and a critical tool for survival, the human hand is of extraordinary importance to our evolutionary survival. As the product of countless overlapping chemical signals, the upper extremity is highly dependent on a multifactoral web of genetic and environmental factors. At the molecular level, specialized signaling centers guide limb development along 3 spatial limb axes: (1) proximodistal, (2) anteroposterior, and (3) dorsoventral. Within the growing limb bud, the 3 main signaling centers are (1) the apical ectodermal ridge, (2) the zone of polarizing activity, and (3) the nonridge ectoderm. Cells within these signaling centers govern the process of limb differentiation via secretion of various chemical messengers. Although each aspect of extremity growth seems directly dependent on a process-specific mechanism, overall limb development relies on the proper interaction of these countless protein factors. Here, we review the macroscopic development of the upper limb and discuss the complex mechanisms underlying differentiation of the human hand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0b013e3181abb18e | DOI Listing |
Anal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.
The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.
View Article and Find Full Text PDFInflammation
January 2025
Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Otolaryngology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, Shandong, People's Republic of China.
Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, has been revealed to exhibit potent anti-inflammatory properties in allergic airway inflammation. This study aimed to explore the role of baicalein and its relevant mechanism in the treatment of allergic rhinitis (AR). The bioinformatics tools were used to predict the targets of baicalein and AR-related genes.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
The present investigation evaluated the potential impacts of morin, a natural flavonoid, against cardiovascular disorders. Since inception until September 2024, PubMed, Scopus, and Web of Science have been searched extensively. The process involved eliminating duplicate entries and conducting a systematic review of the remaining studies post-full-text screening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!