Natural immunity to meningococcal disease in young children is associated epidemiologically with carriage of commensal Neisseria species, including Neisseria lactamica. We have previously demonstrated that outer membrane vesicles (OMVs) from N. lactamica provide protection against lethal challenge in a mouse model of meningococcal septicemia. We evaluated the safety and immunogenicity of an N. lactamica OMV vaccine in a phase I placebo-controlled, double-blinded clinical trial. Ninety-seven healthy young adult male volunteers were randomized to receive three doses of either an OMV vaccine or an Alhydrogel control. Subsequently, some subjects who had received the OMV vaccine also received a fourth dose of OMV vaccine, 6 months after the third dose. Injection site reactions were more frequent in the OMV-receiving group, but all reactions were mild or moderate in intensity. The OMV vaccine was immunogenic, eliciting rises in titers of immunoglobulin G (IgG) against the vaccine OMVs, together with a significant booster response, as determined by an enzyme-linked immunosorbent assay. Additionally, the vaccine induced modest cross-reactive immunity to six diverse strains of serogroup B Neisseria meningitidis, including IgG against meningococcal OMVs, serum bactericidal antibodies, and opsonophagocytic activity. The percentages of subjects showing > or =4-fold rises in bactericidal antibody titer obtained were similar to those previously reported for the Norwegian meningococcal OMV vaccine against the same heterologous meningococcal strain panel. In conclusion, this N. lactamica OMV vaccine is safe and induces a weak but broad humoral immune response to N. meningitidis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725532PMC
http://dx.doi.org/10.1128/CVI.00118-09DOI Listing

Publication Analysis

Top Keywords

omv vaccine
28
vaccine
10
safety immunogenicity
8
meningococcal disease
8
neisseria lactamica
8
outer membrane
8
membrane vesicles
8
lactamica omv
8
omv
7
meningococcal
6

Similar Publications

Recent advances in bacterial outer membrane vesicles: Effects on the immune system, mechanisms and their usage for tumor treatment.

J Pharm Anal

December 2024

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy.

View Article and Find Full Text PDF

Outer membrane vesicles (OMVs), shed by Gram-negative bacteria, are spherical nanostructures that play a pivotal role in bacterial communication and host-pathogen interactions. Comprising an outer membrane envelope and encapsulating a variety of bioactive molecules from their progenitor bacteria, OMVs facilitate material and informational exchange. This review delves into the recent advancements in OMV research, providing a comprehensive overview of their structure, biogenesis, and mechanisms of vesicle formation.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.

View Article and Find Full Text PDF

Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development.

Life (Basel)

December 2024

Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria.

The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!