The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences, Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore, in SmuTR(-/-) mice, deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks, particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly, when the SmuTR region is present, deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies, suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677205PMC
http://dx.doi.org/10.4049/jimmunol.0900135DOI Listing

Publication Analysis

Top Keywords

mlh1 exo1
16
absence smutr
12
exo1 deficiencies
12
class switch
8
switch recombination
8
junction microhomology
8
msh2
8
csr
8
smutr region
8
smutr-/- mice
8

Similar Publications

MELATONIN ENHANCES TEMOZOLOMIDE-INDUCED APOPTOSIS IN GLIOBLASTOMA AND NEUROBLASTOMA CELLS.

Exp Oncol

October 2024

Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne, Turkey.

Article Synopsis
  • The study investigates the effects of melatonin (MEL) combined with temozolomide (TMZ) on glioblastoma and neuroblastoma cancer cell lines, aiming to understand how this combination affects cell viability and resistance.
  • Results reveal that the MEL and TMZ combination significantly decreases cancer cell viability and increases apoptosis compared to other treatments, highlighting a potential strategy to counteract drug resistance in these cancers.
  • The findings suggest that this combination therapy upregulates genes involved in antioxidant defense and DNA repair, indicating a possible mechanism through which MEL enhances the efficacy of TMZ.
View Article and Find Full Text PDF

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution.

View Article and Find Full Text PDF

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin () gene. The repeat-expanded encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown.

View Article and Find Full Text PDF

The yeast Candida albicans is one of the most aggressive opportunistic pathogens in immunocompromised patients. The ability of the yeast to withstand stresses and radicals is of great concern. In the present study, four isolates of C.

View Article and Find Full Text PDF

The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!