It was previously shown that administration of recombinant human Fms-like tyrosine kinase receptor-3 ligand (Flt3L) before allergen challenge of sensitized mice suppresses the cardinal features of asthma through unclear mechanisms. Here, we show that Flt3L dramatically alters the balance of conventional to plasmacytoid dendritic cells (pDCs) in the lung favoring the accumulation of pDCs. Selective removal of pDCs abolished the antiinflammatory effect of Flt3L, suggesting a regulatory role for these cells in ongoing asthmatic inflammation. In support, we found that immature pDCs are recruited to the lungs of allergen-challenged mice irrespective of Flt3L treatment. Selective removal of pDCs during allergen challenge enhanced airway inflammation, whereas adoptive transfer of cultured pDCs before allergen challenge suppressed inflammation. Experiments in which TLR9 agonist CpG motifs were administered in vitro or in vivo demonstrated that pDCs were antiinflammatory irrespective of their maturation state. These effects were mediated through programmed death-1/programmed death ligand 1 interactions, but not through ICOS ligand, IDO, or IFN-alpha. These findings suggest a specialized immunoregulatory role for pDCs in airway inflammation. Enhancing the antiinflammatory properties of pDCs could be employed as a novel strategy in asthma treatment.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.0900471DOI Listing

Publication Analysis

Top Keywords

airway inflammation
12
allergen challenge
12
pdcs
9
plasmacytoid dendritic
8
dendritic cells
8
selective removal
8
removal pdcs
8
pdcs allergen
8
inflammation
5
anti-inflammatory role
4

Similar Publications

Rationale: Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown.

View Article and Find Full Text PDF

Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation.

View Article and Find Full Text PDF

Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.

View Article and Find Full Text PDF

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

PBAE-PEG based lipid nanoparticles for lung cell-specific gene delivery.

Mol Ther

January 2025

Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:

Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!