The process by which nonenveloped viruses cross cell membranes during host cell entry remains poorly defined; however, common themes are emerging. Here, we use correlated in vivo and in vitro studies to understand the mechanism of Flock House virus (FHV) entry and membrane penetration. We demonstrate that low endocytic pH is required for FHV infection, that exposure to acidic pH promotes FHV-mediated disruption of model membranes (liposomes), and particles exposed to low pH in vitro exhibit increased hydrophobicity. In addition, FHV particles perturbed by heating displayed a marked increase in liposome disruption, indicating that membrane-active regions of the capsid are exposed or released under these conditions. We also provide evidence that autoproteolytic cleavage, to generate the lipophilic gamma peptide (4.4 kDa), is required for membrane penetration. Mutant, cleavage-defective particles failed to mediate liposome lysis, regardless of pH or heat treatment, suggesting that these particles are not able to expose or release the requisite membrane-active regions of the capsid, namely, the gamma peptides. Based on these results, we propose an updated model for FHV entry in which (i) the virus enters the host cell by endocytosis, (ii) low pH within the endocytic pathway triggers the irreversible exposure or release of gamma peptides from the virus particle, and (iii) the exposed/released gamma peptides disrupt the endosomal membrane, facilitating translocation of viral RNA into the cytoplasm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738175PMC
http://dx.doi.org/10.1128/JVI.00873-09DOI Listing

Publication Analysis

Top Keywords

low endocytic
12
gamma peptides
12
flock house
8
house virus
8
cell entry
8
host cell
8
fhv entry
8
membrane penetration
8
membrane-active regions
8
regions capsid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!