Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

Proc Natl Acad Sci U S A

The Fenner School of Environment and Society, Australian National University, Canberra, ACT 0200, Australia.

Published: July 2009

From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701447PMC
http://dx.doi.org/10.1073/pnas.0901970106DOI Listing

Publication Analysis

Top Keywords

biomass carbon
12
carbon stocks
12
temperate moist
12
carbon
9
forests
9
global site
8
site biomass
8
biomass data
8
moist forests
8
climate change
8

Similar Publications

Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.

View Article and Find Full Text PDF

Exposure Contrasts of Women Aged 40-79 Years during the Household Air Pollution Intervention Network Randomized Controlled Trial.

Environ Sci Technol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.

Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

A comparative evaluation of rehabilitation approaches for ecological recovery in arid limestone mine sites.

J Environ Manage

January 2025

College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China. Electronic address:

Limestone mining in arid regions, particularly within fragile environments, leads to severe environmental pollution and ecological degradation. Developing a scientifically sound and effective ecological rehabilitation strategy is therefore critical. This study constructed a three-dimensional ecological rehabilitation model integrating soil amelioration and vegetation reconstruction.

View Article and Find Full Text PDF

Mn-Doped Ni(OH)2 Nanosheets as High-Performance Electrocatalyst for 5-Hydroxymethylfurfural Electrooxidation.

Chem Asian J

January 2025

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, school of chemistry and chemical engineering, Shanda nan Road 27, 250100, Jinan, CHINA.

Converting 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) via electrooxidation is a sustainable approach for generating high-value chemicals from biomass. This study presents Mn-doped Ni(OH)2 nanosheets as an effective electrocatalyst for HMF electrooxidation. The Mn-doped Ni(OH)2 nanosheets were synthesized through a microwave-assisted deep eutectic solvent (DES) strategy, followed by an alkaline reflux process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!