Separation of 1-23-kb complementary DNA strands by urea-agarose gel electrophoresis.

Nucleic Acids Res

Department of Biophysics and Cell Biology, University of Debrecen, 4012 Debrecen, Nagyerdei krt. 98, Hungary.

Published: September 2009

Double-stranded (ds), as well as denatured, single-stranded (ss) DNA samples can be analyzed on urea-agarose gels. Here we report that after denaturation by heat in the presence of 8 M urea, the two strands of the same ds DNA fragment of approximately 1-20-kb size migrate differently in 1 M urea containing agarose gels. The two strands are readily distinguished on Southern blots by ss-specific probes. The different migration of the two strands could be attributed to their different, base composition-dependent conformation impinging on the electrophoretic mobility of the ss molecules. This phenomenon can be exploited for the efficient preparation of strand-specific probes and for the separation of the complementary DNA strands for subsequent analysis, offering a new tool for various cell biological research areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761254PMC
http://dx.doi.org/10.1093/nar/gkp539DOI Listing

Publication Analysis

Top Keywords

complementary dna
8
dna strands
8
strands
5
separation 1-23-kb
4
1-23-kb complementary
4
dna
4
strands urea-agarose
4
urea-agarose gel
4
gel electrophoresis
4
electrophoresis double-stranded
4

Similar Publications

Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.

View Article and Find Full Text PDF

Prostate cancer antigen 3 (PCA3) has emerged as a critical biomarker for the early detection of prostate cancer, complementing the traditional prostate-specific antigen (PSA) testing. This research presents a novel resistive sensor based on reduced graphene oxide (RGO) functionalized with glutaraldehyde (GA)/complementary single-stranded DNA (ss-DNA) for the detection of the PCA3 RNA. The device was meticulously characterized at each fabrication step to confirm the successful integration of the various layers on the sensor device, utilizing atomic force microscopy (AFM) which confirmed the increase in the thickness of the sensor from ∼1.

View Article and Find Full Text PDF

Artificially synthesized DNA holds significant promise in addressing fundamental biochemical questions and driving advancements in biotechnology, genetics, and DNA digital data storage. Rapid and precise electric identification of these artificial DNA strands is crucial for their effective application. Herein, we present a comprehensive investigation into the electric recognition of eight artificial synthesized DNA (DNA and DNA) nucleobases using quantum tunneling transport and machine learning (ML) techniques.

View Article and Find Full Text PDF

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!