Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The aim of this study was to determine the accuracy of new quantitative echocardiographic strain and strain-rate imaging parameters to identify abnormal regional right ventricular (RV) deformation associated with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C).
Methods: A total of 34 patients with ARVD/C (confirmed by Task Force criteria) and 34 healthy controls were prospectively enrolled. Conventional echocardiography, including Doppler tissue imaging (DTI), was performed. Doppler and two-dimensional strain-derived velocity, strain, and strain rate were calculated in the apical, mid, and basal segments of the RV free wall.
Results: RV dimensions were significantly increased in patients with ARVD/C (RV outflow tract 19.3+/-5.2 mm/m2 vs 14.1+/-2.2 mm/m2, P<.001; RV inflow tract 23.4+/-4.8 mm/m2 vs 18.8+/-2.4 mm/m2, P<.001), whereas left ventricular dimensions were not significantly different compared with controls. Strain and strain rate values were significantly lower in patients with ARVD/C in all 3 segments. All deformation parameters showed a higher accuracy to detect functional abnormalities compared with conventional echocardiographic criteria of dimensions or global systolic function. The lowest DTI strain value in any of the 3 analyzed segments showed the best receiver operating characteristics (area under the curve 0.97) with an optimal cutoff value of -18.2%.
Conclusions: DTI and two-dimensional strain-derived parameters are superior to conventional echocardiographic parameters in identifying ARVD/C. This novel technique may have additional value in the diagnostic workup of patients with suspected ARVD/C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.echo.2009.05.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!