Purpose: The articular cartilage is a small tissue with a matrix structure of three layers between which the orientation of collagen fiber differs. A diffusion-weighted twice-refocused spin-echo echo-planar imaging (SE-EPI) sequence was optimized for the articular cartilage, and the structure of the three layers of human articular cartilage was imaged in vivo from diffusion tensor images.

Materials And Methods: The subjects imaged were five specimens of swine femur head after removal of the flesh around the knee joint, five specimens of swine articular cartilage with flesh present and the knee cartilage of five adult male volunteers. Based on diffusion-weighted images in six directions, the mean diffusivity (MD) and the fractional anisotropy (FA) values were calculated.

Results: Diffusion tensor images of the articular cartilage were obtained by sequence optimization. The MD and FA value of the specimens (each of five examples) under different conditions were estimated. Although the articular cartilage is a small tissue, the matrix structure of each layer in the articular cartilage was obtained by SE-EPI sequence with GRAPPA. The MD and FA values of swine articular cartilage are different between the synovial fluid and saline. In human articular cartilage, the load of the body weight on the knee had an effect on the FA value of the surface layer of the articular cartilage.

Conclusion: This method can be used to create images of the articular cartilage structure, not only in vitro but also in vivo. Therefore, it is suggested that this method should support the elucidation of the in vivo structure and function of the knee joint and might be applied to clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2009.05.012DOI Listing

Publication Analysis

Top Keywords

articular cartilage
44
articular
12
cartilage
12
diffusion tensor
12
cartilage small
8
small tissue
8
tissue matrix
8
matrix structure
8
structure three
8
three layers
8

Similar Publications

Introduction: Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degeneration. Chondrocyte inflammation, apoptosis, and extracellular matrix degradation accelerated OA progression. MicroRNA (miRNA) has the potential to be a therapeutic method for osteoarthritis.

View Article and Find Full Text PDF

Introduction: This study aimed to determine the association between the baseline magnetic resonance imaging (MRI) findings and clinical outcomes after articular injection of adipose-derived mesenchymal stem cells (ASCs) for knee osteoarthritis (KOA).

Methods: This retrospective study included 149 patients with varus-type KOA treated with a single intraarticular ASC injection. All patients underwent a MRI evaluation before treatment.

View Article and Find Full Text PDF

This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM).

View Article and Find Full Text PDF

Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN).

View Article and Find Full Text PDF

Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!