Signal transduction following binding of lipopolysaccharide (LPS) to Toll-like receptor 4 (TLR4) is an essential aspect of host innate immune responses to infection by Gram-negative pathogens. Here, we describe a novel molecular mechanism used by a prevalent human bacterial pathogen to evade and subvert the human innate immune system. We show that the oral pathogen, Porphyromonas gingivalis, uses endogenous lipid A 1- and 4'-phosphatase activities to modify its LPS, creating immunologically silent, non-phosphorylated lipid A. This unique lipid A provides a highly effective mechanism employed by this bacterium to evade TLR4 sensing and to resist killing by cationic antimicrobial peptides. In addition, lipid A 1-phosphatase activity is suppressed by haemin, an important nutrient in the oral cavity. Specifically, P. gingivalis grown in the presence of high haemin produces lipid A that acts as a potent TLR4 antagonist. These results suggest that haemin-dependent regulation of lipid A 1-dephosphorylation can shift P. gingivalis lipid A activity from TLR4 evasive to TLR4 suppressive, potentially altering critical interactions between this bacterium, the local microbial community and the host innate immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074576PMC
http://dx.doi.org/10.1111/j.1462-5822.2009.01349.xDOI Listing

Publication Analysis

Top Keywords

innate immune
12
toll-like receptor
8
lipid
8
lipid 4'-phosphatase
8
4'-phosphatase activities
8
host innate
8
immune system
8
tlr4
5
human toll-like
4
receptor responses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!