Radiation effects on hydrophobic ionic liquid [C4mim][NTf2] during extraction of strontium ions.

J Phys Chem B

Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, P. R. China.

Published: July 2009

The applications of room-temperature ionic liquids (RTILs) in separation of high level radioactive nuclides demand a comprehensive knowledge of the stability and metal ion extraction of RTILs under radiation. Herein, we assessed the influence of gamma-irradiation on the [C(4)mim][NTf(2)]-based extraction system, where [C(4)mim](+) is 1-butyl-3-methylimidazolium and [NTf(2)](-) is bis(trifluoromethylsulfonyl)imide, by solvent extraction of Sr(2+) using irradiated [C(4)mim][NTf(2)] in combination with dicyclohexyl-18-crown-6 (DCH18C6). It was found that the degree of extraction for Sr(2+) from water to irradiated [C(4)mim][NTf(2)] decreased compared with that to unirradiated [C(4)mim][NTf(2)], and the decrement enhanced obviously with increasing dose. NMR spectroscopic probe analysis revealed the formation of acids during irradiation of [C(4)mim][NTf(2)]. The decrease of Sr(2+) partitioning in irradiated [C(4)mim][NTf(2)] is attributed to the competition between H(+) with Sr(2+) to interact with DCH18C6. Accordingly, washing irradiated [C(4)mim][NTf(2)] with water gives a simple way of ionic liquid recycling. Furthermore, the degree of extraction for Sr(2+) from 3 mol.L(-1) nitric acid solution to [C(4)mim][NTf(2)] is independent of the irradiation of [C(4)mim][NTf(2)] since the amount of the radiation-generated H(+) is negligible in such a high acidic solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9016079DOI Listing

Publication Analysis

Top Keywords

irradiated [c4mim][ntf2]
16
extraction sr2+
12
[c4mim][ntf2]
9
ionic liquid
8
degree extraction
8
irradiation [c4mim][ntf2]
8
extraction
6
sr2+
5
radiation effects
4
effects hydrophobic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!