A novel class of heat shock protein 90 (Hsp90) inhibitors was developed from an unbiased screen to identify protein targets for a diverse compound library. These indol-4-one and indazol-4-one derived 2-aminobenzamides showed strong binding affinity to Hsp90, and optimized analogues exhibited nanomolar antiproliferative activity across multiple cancer cell lines. Heat shock protein 70 (Hsp70) induction and specific client protein degradation in cells on treatment with the inhibitors supported Hsp90 inhibition as the mechanism of action. Computational chemistry and X-ray crystallographic analysis of selected member compounds clearly defined the protein-inhibitor interaction and assisted the design of analogues. 4-[6,6-Dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tetrahydro-1H-indazol-1-yl]-2-[(trans-4-hydroxycyclohexyl)amino]benzamide (SNX-2112, 9) was identified as highly selective and potent (IC(50) Her2 = 11 nM, HT-29 = 3 nM); its prodrug amino-acetic acid 4-[2-carbamoyl-5-(6,6-dimethyl-4-oxo-3-trifluoromethyl-4,5,6,7-tetrahydro-indazol-1-yl)-phenylamino]-cyclohexyl ester methanesulfonate (SNX-5422, 10) was orally bioavailable and efficacious in a broad range of xenograft tumor models (e.g. 67% growth delay in a HT-29 model) and is now in multiple phase I clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm900230j | DOI Listing |
Alzheimers Dement
December 2024
Delaware State University, Dover, DE, USA.
Background: Aggregation of transactive response DNA binding protein 43 (TDP-43) is the major pathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, in up to 50% of Alzheimer's disease (AD) cases TDP-43 pathology was discovered and this pathology has been referred to as limbic-predominant age-related TDP43 encephalopathy (LATE). Several studies reported that TDP-43 binds to heat shock protein family B (small) member 1 (HSPB1 or HSP27) but no functional evaluation of this interaction has been explored.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ohio State University College of Medicine, Neurobiology of Aging & Resilience Center, Columbus, OH, USA.
Background: The cerebrovasculature is an essential component of brain homeostasis. Cerebrovascular disorders are associated with an increased risk for neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which cerebrovascular dysfunction contributes to neurodegeneration are poorly understood.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Rush University Medical Center, Chicago, IL, USA.
Background: Abnormal brain insulin signaling has been associated with Alzheimer's disease pathology and a faster rate of late-life cognitive decline. However, the underlying mechanisms remain unclear. In this study, we examined whether AD-related cortical proteins identified using targeted-proteomics play a role in the association of brain insulin signaling and cognitive decline.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
Background: Alzheimer's Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression.
Method: We generated bulk RNA-sequencing in prefrontal cortex from 565 AD brain samples (non-Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.
Alzheimers Dement
December 2024
Delaware State University, Dover, DE, USA.
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by upper and lower motor neuron death that leads to paralysis with the average survival being 3-5 years after diagnosis. The major pathological protein in ALS is TDP-43. TDP-43 becomes hyperphosphorylated and forms inclusions mainly in the cytoplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!