Recognition of foreign DNA by cytosolic innate immune receptors triggers the production of IFN-beta. However, it is unclear whether different types of DNA ligands are recognized by similar receptors and whether the resulting response is distinct from the endosomal TLR response. To address these questions, we compared the two most commonly used types of DNA ligands (IFN-stimulatory DNA (ISD) and poly(dAdT)) and assessed the minimal structural requirements for stimulatory capacity in RAW264.7 cells. Gene expression signatures and competition experiments suggest that ISD and poly(dAdT) are qualitatively indistinguishable and differ from the CpG-containing oligonucleotides triggering the TLR9 pathway. Structure - activity relationship analyses revealed that a minimal length of two helical turns is sufficient for ISD-mediated IFN-beta induction, while phosphorylation at the 5'-end is dispensable. Altogether, our data suggest that, in murine macrophages, only one major cytosolic DNA recognition pathway is operational.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200939344DOI Listing

Publication Analysis

Top Keywords

dna recognition
8
recognition pathway
8
murine macrophages
8
types dna
8
dna ligands
8
isd polydadt
8
dna
5
tlr-independent dna
4
pathway murine
4
macrophages ligand
4

Similar Publications

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.

View Article and Find Full Text PDF

Trans-active response DNA-binding protein-43 (TDP-43) is the major pathological protein in motor neuron disease and TDP-43 pathology has been described in the brains of up to 50% of patients with Alzheimer disease (AD). Hippocampal sclerosis of aging (HS-A), an age-related neuropathology characterized by severe neuronal loss and gliosis in CA1 and/or subiculum, is found in ∼80% of cases that are positive for phosphorylated TDP-43. HS-A is seen as a co-pathology in cases with AD, limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC), and frontotemporal degeneration.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!