Bioreactor stresses, including nutrient deprivation, shear stress, and byproduct accumulation can cause apoptosis, leading to lower recombinant protein yields and increased costs in downstream processing. Although cell engineering strategies utilizing the overexpression of antiapoptotic Bcl-2 family proteins such as Bcl-2 and Bcl-x(L) potently inhibit apoptosis, no studies have examined the use of the Bcl-2 family protein, Mcl-1, in commercial mammalian cell culture processes. Here, we overexpress both the wild type Mcl-1 protein and a Mcl-1 mutant protein that is not degraded by the proteasome in a serum-free Chinese hamster ovary (CHO) cell line producing a therapeutic antibody. The expression of Mcl-1 led to increased viabilities in fed-batch culture, with cell lines expressing the Mcl-1 mutant maintaining approximately 90% viability after 14 days when compared with 65% for control cells. In addition to enhanced culture viability, Mcl-1-expressing cell lines were isolated that consistently showed increases in antibody production of 20-35% when compared with control cultures. The quality of the antibody product was not affected in the Mcl-1-expressing cell lines, and Mcl-1-expressing cells exhibited 3-fold lower caspase-3 activation when compared with the control cell lines. Altogether, the expression of Mcl-1 represents a promising alternative cell engineering strategy to delay apoptosis and increase recombinant protein production in CHO cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.192DOI Listing

Publication Analysis

Top Keywords

cell lines
16
chinese hamster
8
hamster ovary
8
recombinant protein
8
cell
8
cell engineering
8
bcl-2 family
8
protein mcl-1
8
mcl-1 mutant
8
expression mcl-1
8

Similar Publications

A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2 normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature.

View Article and Find Full Text PDF

WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by loss of function.

Sci Adv

January 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to gene mutations. Mice with deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in and mutants, where lysosomes accumulate cholesterol.

View Article and Find Full Text PDF

Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!