Concordance analysis of an in vitro micronucleus screening assay and the regulatory chromosome aberration assay using pharmaceutical drug candidates.

Environ Mol Mutagen

Genetic Toxicology Laboratories, Pfizer Global Research & Development, Groton, Connecticut 06340, USA.

Published: January 2010

The in vitro micronucleus assay is under consideration by regulatory agencies as a suitable alternative to the in vitro chromosome aberration (CA) assay. At Pfizer, we utilized a non-Good Laboratory practices cytokinesis-block in vitro micronucleus (CBMN) assay in CHO cells as a screen to predict the regulatory outcome of the human lymphocyte CA assay, and we have retrospectively analyzed a highly select set of 112 internal drug candidates to measure concordance. Overall, our exploratory CBMN correctly classified 97 of 112 (86.6%) compounds in the CA assay. Specificity was high with 87 of 92 (94.6%) CA negative compounds correctly classified by CBMN. Sensitivity was low at 50% with 10 of 20 CA positive compounds correctly classified by CBMN; this may be attributed to the low number of CA positives in the select set. In an attempt to improve sensitivity, we increased the number of CA positives by combining our internal set with an industrial data set previously published (Miller B et al. 1997: Mutat Res 392:45-59). When combined, concordance was 86.7% (143/165), specificity was 91.2% (114/125), and sensitivity increased to 72.5% (29/40). Because cytotoxicity is considered a confounding factor of in vitro test systems, we also examined, within the Pfizer data set, the influence of cytotoxicity in the CBMN assay, and the results indicated that seemingly low (<50%) or excessively high (>70%) levels of cytotoxicity did not significantly alter predicted CA outcome. These collective analyses contribute to growing evidence that the CBMN assay is a suitable regulatory option in the standard battery of genetic toxicology tests.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.20507DOI Listing

Publication Analysis

Top Keywords

vitro micronucleus
12
cbmn assay
12
correctly classified
12
assay
9
chromosome aberration
8
aberration assay
8
drug candidates
8
select set
8
compounds correctly
8
classified cbmn
8

Similar Publications

The highly valued oil of Mill. (Rosaceae), widely used in high perfumery, cosmetics, and other spheres of human life, obliges us to know and study the safety profile of the product obtained from the water-steam distillation of fresh rose petals. The genotoxicity of the essential oil (EsO) has not been thoroughly studied despite its wide range of applications.

View Article and Find Full Text PDF

Abnormal chromosome segregation (ACS) in preimplantation embryos causes miscarriages. For a normal pregnancy, it is necessary to reduce ACS occurrences in embryos. However, the causes of such abnormalities are unclear because no method to extract the segregated chromosomes from the blastomeres for detailed analysis.

View Article and Find Full Text PDF

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E).

Toxicol Ind Health

January 2025

Cincinnati, OH, USA.

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.

View Article and Find Full Text PDF

Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of L. Leaf Extract.

Int J Mol Sci

December 2024

Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.

L. () is used in Italian folk medicine. This study was performed to determine genotoxic and antigenotoxic effects of leaf extract against mitomycin C (MMC) using an in vitro cytokinesis-block micronucleus assay (CBMN) in the Chinese Hamster Ovarian K1 (CHO-K1) cell line.

View Article and Find Full Text PDF

Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!