Objectives: Ample clinical and experimental evidence indicated that patients with Alzheimer's disease display a high incidence of cardiovascular events. This study was designed to examine myocardial histology, cardiomyocyte shortening, intracellular Ca(2+) homeostasis and regulatory proteins, electrocardiogram, adrenergic response, endoplasmic reticulum (ER) stress and protein carbonyl formation in C57 wild-type (WT) mice and an APPswe/PS1dE9 transgenic (APP/PS1) model for Alzheimer's disease.
Methods: Cardiomyocyte mechanical properties were evaluated including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR), maximal velocity of shortening and relengthening (+/-dL/dt), intracellular Ca(2+) transient rise and decay.
Results: Little histological changes were observed in APP/PS1 myocardium. Cardiomyocytes from APP/PS1 but not APP or PS1 single mutation mice exhibited depressed PS, reduced+/-dL/dt, normal TPS and TR compared with WT mice(.) Rise in intracellular Ca(2+) was lower accompanied by unchanged resting/peak intracellular Ca(2+) levels and intracellular Ca(2+) decay in APP/PS1 mice. Cardiomyocytes from APP/PS1 mice exhibited a steeper decline in PS at high frequencies. The responsiveness to adrenergic agonists was dampened although beta(1)-adrenergic receptor expression was unchanged in APP/PS1 hearts. Expression of the Ca(2+) regulatory protein phospholamban and protein carbonyl formation were downregulated and elevated, respectively, associated with unchanged SERCA2a, Na(+)-Ca(2+) exchanger and ER stress markers in APP/PS1 hearts. Our further study revealed that antioxidant N-acetylcysteine attenuated the contractile dysfunction in APP/PS1 mice.
Conclusions: Our results depicted overt cardiomyocyte mechanical dysfunction in the APP/PS1 Alzheimer's disease model, possibly due to oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696039 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006033 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!