An optical modulator design based upon anti-crossing between coupled silicon microrings with independent amplitude and phase functionality is presented. The device exhibits over 25x improvement in sensitivity to an input drive signal when compared with previously studied microring modulators based on control of waveguide-resonator coupling. The new design also demonstrates an ON-OFF contrast of 14 dB, and has an ultra-compact footprint of 0.003 mm(2). The observed sensitivity enhancement suggests that this modulator may be driven directly by digital CMOS electrical signals with less than 1 V amplitude.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.15.017264DOI Listing

Publication Analysis

Top Keywords

amplitude phase
8
optical modulation
4
modulation anti-crossing
4
anti-crossing paired
4
paired amplitude
4
phase resonators
4
resonators optical
4
optical modulator
4
modulator design
4
design based
4

Similar Publications

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Ultrasonic welding (USW) is considered one of the most suitable methods to join semi-crystalline carbon fiber-reinforced thermoplastics (CFRTPs). The degree of crystallinity (DoC) of the semi-crystalline resin will affect the ultrasonic welding process by affecting the mechanical properties of the base material. In addition, ultrasonic welding parameters will affect the joint performance by affecting the DoC of the welded material at the welding interface.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

A Novel Active Polyphase Filter Employing Frequency-Dependent Image Rejection Enhancement Technique.

Micromachines (Basel)

January 2025

School of Microelectronics, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an 710129, China.

In low intermediate frequency (low-IF) receivers, image interference rejection is one of the core tasks to be accomplished. Conventional active polyphase filters (APPFs) are unable to have a sufficient image rejection ratio (IRR) at high operating frequencies due to the degradation of the IRR by the amplitude and phase imbalances produced by the secondary pole. The proposed solution to the above problem is a frequency-dependent image rejection enhancement technique based on secondary pole compensation.

View Article and Find Full Text PDF

Coaxial rotor helicopters have many advantages and have a wide range of civilian and military applications; however, there is a risk of blade collision between the upper and lower rotor blades, and the challenge still exists in balancing rotor parameters and flight control. In this paper, a blade tip distance measurement method based on coded ultrasonic ranging and phase triggering is proposed to tackle this measurement environment and expand the application of ultrasonic ranging in high-speed dynamic measurement. The time of flight () of coded ultrasonic ranging is calculated by the amplitude threshold improvement method and cross-correlation method, and the sound velocity is compensated by a proposed multi-factor compensation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!