Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source / Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absrption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.015972 | DOI Listing |
Rev Sci Instrum
January 2025
School of Electronic Engineering, Heilongjiang University, Harbin, HeiLongJiang 150080, China.
Gluing is a critical step in aircraft sealing assembly, with glue profile inspection serving as the final quality assurance measure to ensure consistency and accuracy of the sealant coating, allowing timely detection and correction of defects to maintain assembly integrity and safety. Currently, existing glue inspection systems are limited to basic inspection capabilities, lack result digitization, and exhibit low efficiency. This paper proposes a 3D inspection technology for sealant coating quality based on line-structured light, enabling automated and high-precision inspection of sealant thickness, sealant width, positional accuracy, and overlap joint sealant contour through geometric computation.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Capacitive sensors are commonly used in superconducting gravimeters due to their high resolution and low drift. This study developed a cryogenic front-end circuit for superconducting gravimeters to reduce the negative effects of parasitic capacitance on capacitive sensors. The front-end circuit comprises a noiseless superconducting transformer and a low-noise cryogenic preamplifier, both of which are positioned adjacent to the capacitive sensor probe.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
The CRISPR-activated repair lineage tracing (CARLIN) mouse line uses DNA barcoding to enable high-resolution tracing of cell lineages in vivo (Bowling et al, Cell 181, 1410-1422.e27, 2020). CARLIN mice contain expressed barcodes that allow simultaneous interrogation of lineage and gene expression information from single cells.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Lineage tracing based on modern live imaging approaches enables to visualize, reconstruct, and analyze the developmental history, fate, and dynamic behaviors of cells in vivo in a direct, comprehensive, and quantitative manner. Light-sheet fluorescence microscopy (LSFM) has greatly boosted lineage tracing efforts, because fluorescently labeled specimens can be imaged in their entirety, over long periods of time, with high spatiotemporal resolution and minimal photodamage. In addition, an increasing arsenal of commercial and open-source software solutions for cell and nuclei segmentation and tracking can be employed to convert data from pixel-based to object-based representations, and to reconstruct the lineages of cells in their native context as they organize in tissues, organs, and whole organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!