A time-resolved mid-infrared upconversion technique based on sum-frequency generation was applied to measure pulse propagation in lambda approximately 5.0 mum quantum cascade lasers operated in continuous wave at 30 K. The wavelength-dependent propagation delay of femtosecond mid-infrared pulses was measured to determine the total group-velocity dispersion. The material and waveguide dispersion were calculated and their contributions to the total group-velocity dispersion were found to be relatively small and constant. The small-signal gain dispersion was estimated from a measurement of the electroluminescence spectrum without a laser cavity, and was found to be the largest component of the total GVD. A negative group-velocity dispersion of beta2 ( =d2beta/d omega2) approximately - 4.6x10-6 ps2/mum was observed at the peak emission wavelength, and good agreement was found for the measured and calculated pulse-broadening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.015898 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!