We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.15.013114 | DOI Listing |
We theoretically study the effect of free-carrier lifetime on processing speed and strength of nonlinearity, pertaining to our all-optical thresholder. We find that optimal device performance necessitates tuning lifetime while optimizing for both speed and nonlinearity. We also experimentally demonstrate device processing speed improvement from 400 Mbps to 2.
View Article and Find Full Text PDFWe present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!